565 research outputs found

    An accurate retrieval through R-MAC+ descriptors for landmark recognition

    Full text link
    The landmark recognition problem is far from being solved, but with the use of features extracted from intermediate layers of Convolutional Neural Networks (CNNs), excellent results have been obtained. In this work, we propose some improvements on the creation of R-MAC descriptors in order to make the newly-proposed R-MAC+ descriptors more representative than the previous ones. However, the main contribution of this paper is a novel retrieval technique, that exploits the fine representativeness of the MAC descriptors of the database images. Using this descriptors called "db regions" during the retrieval stage, the performance is greatly improved. The proposed method is tested on different public datasets: Oxford5k, Paris6k and Holidays. It outperforms the state-of-the- art results on Holidays and reached excellent results on Oxford5k and Paris6k, overcame only by approaches based on fine-tuning strategies

    Efficient Nearest Neighbors Search for Large-Scale Landmark Recognition

    Full text link
    The problem of landmark recognition has achieved excellent results in small-scale datasets. When dealing with large-scale retrieval, issues that were irrelevant with small amount of data, quickly become fundamental for an efficient retrieval phase. In particular, computational time needs to be kept as low as possible, whilst the retrieval accuracy has to be preserved as much as possible. In this paper we propose a novel multi-index hashing method called Bag of Indexes (BoI) for Approximate Nearest Neighbors (ANN) search. It allows to drastically reduce the query time and outperforms the accuracy results compared to the state-of-the-art methods for large-scale landmark recognition. It has been demonstrated that this family of algorithms can be applied on different embedding techniques like VLAD and R-MAC obtaining excellent results in very short times on different public datasets: Holidays+Flickr1M, Oxford105k and Paris106k

    A location-aware embedding technique for accurate landmark recognition

    Full text link
    The current state of the research in landmark recognition highlights the good accuracy which can be achieved by embedding techniques, such as Fisher vector and VLAD. All these techniques do not exploit spatial information, i.e. consider all the features and the corresponding descriptors without embedding their location in the image. This paper presents a new variant of the well-known VLAD (Vector of Locally Aggregated Descriptors) embedding technique which accounts, at a certain degree, for the location of features. The driving motivation comes from the observation that, usually, the most interesting part of an image (e.g., the landmark to be recognized) is almost at the center of the image, while the features at the borders are irrelevant features which do no depend on the landmark. The proposed variant, called locVLAD (location-aware VLAD), computes the mean of the two global descriptors: the VLAD executed on the entire original image, and the one computed on a cropped image which removes a certain percentage of the image borders. This simple variant shows an accuracy greater than the existing state-of-the-art approach. Experiments are conducted on two public datasets (ZuBuD and Holidays) which are used both for training and testing. Morever a more balanced version of ZuBuD is proposed.Comment: 6 pages, 5 figures, ICDSC 201

    Alignment-based Similarity of People Trajectories using Semi-directional Statistics

    Get PDF
    This paper presents a method for comparing people trajectories for video surveillance applications, based on semi-directional statistics. In fact, the modelling of a trajectory as a sequence of angles, speeds and time lags, requires the use of a statistical tool capable to jointly consider periodic and linear variables. Our statistical method is compared with two state-of-the-art methods

    A Distributed Outdoor Video Surveillance System for Detection of Abnormal People Trajectories

    Get PDF
    Distributed surveillance systems are nowadays widely adopted to monitor large areas for security purposes. In this paper, we present a complete multicamera system designed for people tracking from multiple partially overlapped views and capable of inferring and detecting abnormal people trajectories. Detection and tracking are performed by means of background suppression and an appearance-based probabilistic approach. Objects' label ambiguities are geometrically solved and the concept of "normality" is learned from data using a robust statistical model based on Von Mises distributions. Abnormal trajectories are detected using a first-order Bayesian network and, for each abnormal event, the appearance of the subject from each view is logged. Experiments demonstrate that our system can process with real-time performance up to three cameras simultaneously in an unsupervised setup and under varying environmental conditions

    A complete hand-drawn sketch vectorization framework

    Full text link
    Vectorizing hand-drawn sketches is a challenging task, which is of paramount importance for creating CAD vectorized versions for the fashion and creative workflows. This paper proposes a complete framework that automatically transforms noisy and complex hand-drawn sketches with different stroke types in a precise, reliable and highly-simplified vectorized model. The proposed framework includes a novel line extraction algorithm based on a multi-resolution application of Pearson's cross correlation and a new unbiased thinning algorithm that can get rid of scribbles and variable-width strokes to obtain clean 1-pixel lines. Other contributions include variants of pruning, merging and edge linking procedures to post-process the obtained paths. Finally, a modification of the original Schneider's vectorization algorithm is designed to obtain fewer control points in the resulting Bezier splines. All the proposed steps of the framework have been extensively tested and compared with state-of-the-art algorithms, showing (both qualitatively and quantitatively) its outperformance

    Improving BERT Performance for Aspect-Based Sentiment Analysis

    Full text link
    Aspect-Based Sentiment Analysis (ABSA) studies the consumer opinion on the market products. It involves examining the type of sentiments as well as sentiment targets expressed in product reviews. Analyzing the language used in a review is a difficult task that requires a deep understanding of the language. In recent years, deep language models, such as BERT \cite{devlin2019bert}, have shown great progress in this regard. In this work, we propose two simple modules called Parallel Aggregation and Hierarchical Aggregation to be utilized on top of BERT for two main ABSA tasks namely Aspect Extraction (AE) and Aspect Sentiment Classification (ASC) in order to improve the model's performance. We show that applying the proposed models eliminates the need for further training of the BERT model. The source code is available on the Web for further research and reproduction of the results

    UniParma at SemEval-2021 Task 5: Toxic Spans Detection Using CharacterBERT and Bag-of-Words Model

    Full text link
    With the ever-increasing availability of digital information, toxic content is also on the rise. Therefore, the detection of this type of language is of paramount importance. We tackle this problem utilizing a combination of a state-of-the-art pre-trained language model (CharacterBERT) and a traditional bag-of-words technique. Since the content is full of toxic words that have not been written according to their dictionary spelling, attendance to individual characters is crucial. Therefore, we use CharacterBERT to extract features based on the word characters. It consists of a CharacterCNN module that learns character embeddings from the context. These are, then, fed into the well-known BERT architecture. The bag-of-words method, on the other hand, further improves upon that by making sure that some frequently used toxic words get labeled accordingly. With a 4 percent difference from the first team, our system ranked 36th in the competition. The code is available for further re-search and reproduction of the results

    Image Analysis and Automatic Composition of Ceramic Mosaics

    Get PDF
    The automatic composition of ceramic mosaics by computer vision techniques is studied. In the proposed system, images are reproduced onto a ceramic mosaic based on image resolution, ceramic tile's dimensions, available colours. A camera takes images of ceramic tiles to be used and guides a robot to pick the correct tile and place it at the right position in the mosaic. Colour-based segmentation and colour calibration are needed to select and extract the correct tile according to the colour to be reproduced. The input image is quantized and dithered to find the best representation given the available tiles. Issues related with the interface with robotic system are addressed. [DOI: 10.1685 / CSC06103] About DO

    A novel Region of Interest Extraction Layer for Instance Segmentation

    Full text link
    Given the wide diffusion of deep neural network architectures for computer vision tasks, several new applications are nowadays more and more feasible. Among them, a particular attention has been recently given to instance segmentation, by exploiting the results achievable by two-stage networks (such as Mask R-CNN or Faster R-CNN), derived from R-CNN. In these complex architectures, a crucial role is played by the Region of Interest (RoI) extraction layer, devoted to extracting a coherent subset of features from a single Feature Pyramid Network (FPN) layer attached on top of a backbone. This paper is motivated by the need to overcome the limitations of existing RoI extractors which select only one (the best) layer from FPN. Our intuition is that all the layers of FPN retain useful information. Therefore, the proposed layer (called Generic RoI Extractor - GRoIE) introduces non-local building blocks and attention mechanisms to boost the performance. A comprehensive ablation study at component level is conducted to find the best set of algorithms and parameters for the GRoIE layer. Moreover, GRoIE can be integrated seamlessly with every two-stage architecture for both object detection and instance segmentation tasks. Therefore, the improvements brought about by the use of GRoIE in different state-of-the-art architectures are also evaluated. The proposed layer leads up to gain a 1.1% AP improvement on bounding box detection and 1.7% AP improvement on instance segmentation. The code is publicly available on GitHub repository at https://github.com/IMPLabUniPr/mmdetection/tree/groie_de
    • …
    corecore